a2 United States Patent

McKenney

US009081803B2

US 9,081,803 B2
*Jul. 14, 2015

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

PERFORMANCE OF RCU-BASED SEARCHES
AND UPDATES OF CYCLIC DATA
STRUCTURES

Applicant: International Business Machines
Corporation, Armonk, NY (US)
Inventor: Paul E. McKenney, Beaverton, OR (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 114 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/774,694

Filed: Feb. 22, 2013
Prior Publication Data
US 2014/0108366 Al Apr. 17,2014

Related U.S. Application Data

Continuation of application No. 13/652,607, filed on
Oct. 16, 2012, now Pat. No. 8,874,535.

Int. Cl1.

GO6F 17/30 (2006.01)

GO6F 9/48 (2006.01)

U.S. CL

CPC ... GO6F 17/30286 (2013.01); GO6F 9/4881

(2013.01); GO6F 17/3023 (2013.01)

Field of Classification Search
CPC GO6F 13/3023; GO6F 17/30286; GOG6F
17/30008; GOGF 17/30309; GO6F 17/3023;
GOG6F 17/3007; GO6F 17/30174; GOGF 3/0665;
GOG6F 3/065; GOG6F 21/55; GOG6F 12/00;
GOGF 9/4881; GOGF 9/4843; GOGF 12/0891;
GOG6F 12/0813; GOGF 12/0804

B4

62

USPC 707/695, E17.007, E17.005, 601, 649,
707/737,827, 822, E17.01, E17.032,
707/E17.044, 795, 802, 995, 791, 807, 823;
711/147, 148, 141, 135, 221, E12.06,
711/E12.017, 152, 162, 156, 154, 151,
711/170.162; 718/102, 107, 100, 103, 104;
709/203, 227, 223
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,442,758 A *
5,608,893 A

8/1995 Slingwine et al. 717/147
3/1997 Slingwine et al.

(Continued)
OTHER PUBLICATIONS

“What is RCU, Fundamentally?” Paul McKenney and Jonathan
Walpole, LWN.net (http://lwn.net/Articles/262464/), Dec. 17, 2007.
p- 1-17 (Published in: Linux Weekly News (LWN.net)—Publication
Date: Dec. 2007 *

(Continued)

Primary Examiner — Anh Ly
(74) Attorney, Agent, or Firm — Walter W. Duft

(57) ABSTRACT

A technique for improving the performance of RCU-based
searches and updates to a shared data element group where
readers must see consistent data with respect to the group as
a whole. An updater creates one or more new group data
elements and assigns each element a new generation number
that is different than a global generation number associated
with the data element group, allowing readers to track update
versions. The updater links the new data elements into the
data element group and then updates the global generation
number so that referential integrity is maintained. This is
done using a generation number element that is referenced by
aheader pointer for the data element group, and which in turn
references or forms part of one of the data elements. After a
grace period has elapsed, the any prior version of the genera-
tion number element may be freed.

21 Claims, 7 Drawing Sheets

[

Yy

HP GNE > A

GEN |

64

US 9,081,803 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

5,727,209 A 3/1998 Slingwine et al.

6,021,446 A * 2/2000 Gentry, Jr. .c.coocovvievnennn 719/315

6,219,690 Bl 4/2001 Slingwine et al.

6,662,184 Bl 12/2003 Friedberg

6,886,162 Bl 4/2005 McKenney

6,996,812 B2 2/2006 McKenney

7,191,272 B2 3/2007 McKenney

7,287,135 B2 10/2007 McKenney et al.

7,349,926 B2 3/2008 McKenney et al.

7,353,346 B2 4/2008 McKenney et al.

7,395,263 B2 7/2008 McKenney

7,395,383 B2 7/2008 McKenney

7,426,511 B2* 9/2008 McKenneycco.c.... 711/151

7.454,581 B2 11/2008 McKenney et al.

7,462,511 B2* 12/2008 Yamagata 438/118

7472,228 B2 12/2008 McKenney et al.

7,653,791 B2 1/2010 McKenney

7,668,851 B2 2/2010 Triplett

7,689,789 B2 3/2010 McKenney et al.

7,734,879 B2 6/2010 McKenney et al.

7,734,881 B2 6/2010 McKenney et al.

7,747,805 B2 6/2010 McKenney

7,814,082 B2* 10/2010 McKenneyccocc.... 707/704

7,818,306 B2 10/2010 McKenney et al.

7,873,612 B2* 1/2011 McKenney etal. 707/704

7,904,436 B2 3/2011 McKenney

7,934,062 B2 4/2011 McKenney et al.

7,953,708 B2 5/2011 McKenney et al.

7,953,778 B2* 5/2011 McKenney etal. 707/791

7,987,166 B2 7/2011 McKenney et al.

8,020,160 B2 9/2011 McKenney

8,055,860 B2 11/2011 McKenney et al.

8,055,918 B2 11/2011 McKenney et al.

8,108,696 B2 1/2012 Triplett

8,126,843 B2 2/2012 McKenney et al.

8,176,489 B2 5/2012 Bauer et al.

8,180,971 B2* 5/2012 Scottetal.coenn... 711/141

8,185,704 B2 5/2012 McKenney et al.

8,195,893 B2 6/2012 Triplett
2005/0149634 Al* 7/2005 McKenney 709/248
2005/0198030 Al* 9/2005 McKenney 707/8
2005/0234933 Al* 10/2005 Linccoon.n.. 707/100
2006/0100996 Al* 5/2006 McKenney et al. ... 707/3
2006/0112121 Al* 5/2006 McKenney etal. 707/101
2006/0265373 Al 11/2006 McKenney et al.
2007/0061372 Al* 3/2007 Appavoo etal. 707/200
2007/0183418 Al* 8/2007 Riddoch et al. . 370/389
2008/0033952 Al* 2/2008 McKenney etal. 707/8
2008/0082532 Al 4/2008 McKenney
2008/0177742 Al* 7/2008 McKenneyccoceeeenne. 707/8
2008/0177748 Al* 7/2008 Rondot 707/10
2008/0313238 Al* 12/2008 McKenney etal. . . 707/200
2009/0006403 Al 1/2009 McKenney
2009/0077080 Al 3/2009 McKenney
2009/0254764 Al* 10/2009 McKenney etal. 713/300
2009/0292705 Al* 11/2009 McKenney etal. 707/8
2009/0320030 Al 12/2009 Ogasawara
2011/0055630 Al 3/2011 McKenney et al.
2011/0099335 Al* 4/2011 Scottetal.coenn... 711/141
2011/0283082 Al 11/2011 McKenney et al.
2012/0047140 Al 2/2012 McKenney et al.
2012/0079301 Al 3/2012 McKenney
2012/0113987 Al* 5/2012 Riddochetal. 370/390
2012/0144129 Al 6/2012 McKenney
2012/0324461 Al* 12/2012 McKenney 718/103
2014/0108365 Al* 4/2014 McKenney 707/695
2014/0108366 Al* 4/2014 McKenney 707/695

OTHER PUBLICATIONS

“RCU vs. locking performance on different CPUs”—PE McKen-
ney—linux. conf. au, Adelaide, Australia, 2004—rdrop.com—pp.

1-18.%*

J. Seigh, “RCU + SME for preemptive kernel/user threads,” Linux
Kernel Mailing List, May 9, 2005, 2 pages.

M. Michael, “Hazard Pointers: Safe Memory Reclamation for Lock-
Free Objects ” IEEE Transactions on Parallel and Distributed Sys-
tems. Jun. 2004, vol. 15, No. 6, pp. 491-504.

D. Sarma et al.,, “Making RCU Safe for Deep Sub-Milisecond
Response Realtime Applications,” 2004 USENIX (UseLinux track)
Jun. 2004, 9 pages.

P. McKenney, “Rod vs. Locking Performance on Different CPUs,”
2004 Linux.conf.au, 2004, 18 pages.

P. McKenney et al., “Scaling dcache with RCU,” Linux Journal, Jan.
1, 2004, 12 pages.

P. McKenney et al., “Using RCU in the Linux 2.5 Kernel,” Linux
Journal, Oct. 1, 2003, 11 pages.

P. McKenney et al.,“Read-Copy Update,” 2002 Ottawa Linux Sym-
posium, Jul. 8, 2002, 32 pages.

H. Lindar et al., “Scalability of the Directory Entry Cache,” 2002
Ottawa Linux Symposium, Jun. 26, 2002, pp. 289-300.

P. McKenney et al., “Read-Copy Update,” 2001 Ottawa Linux sym-
posium, Jul. 2001, 22 pages.

P. McKenney et al., “Read-Copy Update: Using Execution History to
Solve Concurrency Problems,” PDCS, Oct. 1998, 11 pages.

S. Dietrich et al., “Evolution of Real-Time Linux”, 7th RTL Work-
shop, Nov. 17, 2005, 18 pages.

B. Gamsa, “Tornado: Maximizing Locality and Concurrency in a
Shared Memory Multiprocessor Operating System,” 1999, 14 pages.
Molnar et al., “Realtime and Linux,” 2005 Linux Kernel Summit, 8
pages.

H. Boehm, “The Space Cost of Lazy Reference Counting,” ACM
SIGPLAN Notices, Proceedings of the 31st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
POPL 04, vol. 39, Issue 1, Jan. 2004, p. 210-219.

M. Michael, “Scalable Look-Free Dynamic Memory Allocation,”
ACM SIGPLAN Notices, Proceedings of the ACM SIGPLAN 2004
Conference on Programming Language Design and Implementation;
PLDI *04, vol. 39, Issue 6, Jun. 2004, p. 35-46.

D. Dice etal., “Mostly Lock-Free Malloc,” ACM SIGPLAN Notices,
Proceedings of the 3rd International Symposium on Memory Man-
agement, ISMM °02, vol. 38, Issue 2 Supplement, Jun. 2002, p.
163-174.

J. Corbet, “Read-copy-update for realtime,” LWN.net, Sep. 26, 2006,
3 pages.

McKenney, “Seven real-time Linux approaches
LinuxDevices.com, Jun. 7, 2005, 13 pages.

P. McKenney, “RCU and CONFIG_PREEMPT_RT progress,”
Linux Kernel Mailing List, May, 9, 2005, 2 pages.

0. Nesterov, QRCU: ‘Quick’ SRCU Implementation, Linux Kernel
Mailing List, Dec. 1, 2005, 3 pages.

P. McKenney, “Sleepable RCU”, LWN.net, Oct. 9, 2006, 10 pages.

P. McKenney, “Read-Copy Update Implementations”, 2001, 3 pages.
M. Herlihy, “A Methodology for Implementing Highly Concurrent
Data Objects,” ACM Transactions on Programming Languages and
Systems, vol. 15, Issue 5, Nov. 1993, pp. 745-770.

M. Michael, “Safe Memory Reclamation for Dynamic Lock-Free
Objects Using Atomic Reads and Writes,” Proceedings of the 21st
Annual ACM Symposium on Principles of Distributed Computing,
Jul. 2002, 10 pages.

N. Barghouti et al., “Concurrency Control in Advanced Database
Operations,” Jan. 1994, 83 pages.

P. McKenney “Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating System Kernels,” OGI
School of School of Science & Engineering at Oregon Health &
Science University, Jul. 2004, pp. 1-380.

P. McKenney et al., “Extending RCU for Realtime and Embedded
Workloads,” 2006 Ottawa Linux Symposium, Aug. 11, 2006, 15
pages.

P. McKenney, “The design of preemptible read-copy-update,” LWN.
net, Oct. 8, 2007, 27 pages.

P. McKenney, “Integrating and Validating dynticks and Preemptible
RCU,” LWN.net, Apr. 22, 2008, 19 pages.

P. McKenney “Hierarchical RCU,” LWN.net, Nov.4, 2008, 19 pages.
P. McKenney, “Is Parallel Programming Hard, and, if So, What Can
You Do About It”, Mar. 8, 2009, 146 pages.

P. McKenney, “Priority-Boosting RCU Read-Side Critical Sections,”
LWN.net, Feb. 5, 2007, 15 pages.

(Part C”,

US 9,081,803 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

P. McKenney et al., “Towards hard realtime response from the Linux
kernel on SMP hardware,” linux.conf.au, Canberra, Australia, Apr.
2005, 16 pages.

P.McKenney et al., “Exploiting Deferred Destruction: An Analysis of
Read-Copy-Update Techniques in Operating System Kernels”, Jan
3,2005, pp. 1-41.

D. Guniguntala et al., “The read-copy-update mechanism for sup-
porting real-time applications on shared-memory multiprocessor
systems with Linux”, IBM Systems Journal vol. 47 No. 2, pp. 221-
236.

P. McKenney, “Introducing Technology Into Linux”, 2008 Linux
Developer Symposium, China, 2008, 47 pages.

P. McKenney, “Simplicity Through Optimization”, linux.conf.au,
Jan. 2010, 109 pages.

P. McKenney, “Deterministic Synchronization in Multicore Systems:
the Role of RCU”, Aug. 18, 2009, pp. 1-9.

P. McKenney, “RCU cleanups and simplified preemptable RCU”,
LKML.org, Jul. 23, 2009, 1 page.

P. McKenney, “Expedited “big hammer” RCU grace periods”,
LKML.org, Jun. 25, 2009, 2 pages.

P. McKenney, “RCU: The Bloatwatch Edition”, LWN.net, Mar. 17,
2009, 9 pages.

M. Desnoyers, “Low-Impact Operating System Tracing”, University
of Montreal, PhD Thesis, Dec. 2009, 233 pages.

P. McKenney. “Using a Malicious User-Level RCU to Torture RCU-
Based Algorithms”, linux.conf.au, Jan. 2009, 51 pages.

P. McKenney et al., “Introducing Technology Into the Linux Kernel:
A Case Study”, Operating Systems Review, Jul. 2008, 16 pages.

P. McKenney, “What is RCU, Fundamentally”, LWN.net, Dec. 17,
2007, 15 pages.

P. McKenney, What is RCU? Part 2: Usage, LWN.net, Dec. 24, 2007,
15 pages.

P. McKenney, RCU part 3: the RCU API, LWN.net, Jan. 7, 2008, 7
pages.

T. Hart et al., “Performance of memory reclamation for lockless
synchronization”, Journal of Parallel and Distributed Computing,
Dec. 2007, pp. 1270-1285.

McKenney, “Using Promela and Spin to verify parallel algorithms”,
LWN.net, Aug. 1, 2007, 11 pages.

McKenney, “RCU and Unloadable Modules”, LWN.net, Jan. 14,
2007, 4 pages.

P. Zijlstra, “[PATCH] slab: document SLAB_DESTROY_BY__
RCU”, LKML.org, Nov. 13, 2008, 1 page.

A. Arcangeli et al., “Using Read-Copy-Update Techniques for Sys-
tem V IPC in the Linux 2.5 Kernel,” 2003 FREENIX, Jun. 14, 2003,
13 pages.

P. McKenney, “The RCU API, 2010 Edition” LWN.net, Dec. 8, 2010,
11 pages.

M. Desnoyers et al., “User-Level Implementations of Read-Copy
Update”, IEEE Transactions on Parallel and Distributed Systems,
vol. X, No. y, Jul. 2009, pp. 1-14.

J. Triplett, “Scalable Concurrent Hash Tables via Relativistic Pro-
gramming”, ACM-SIGOPS Operating System Review vol. 44, Issue
3, Jul. 2010, 14 pages.

T. Gleixner, High Resolution Timers / Dynamic Tics—V2, LWN.net,
Oct. 31, 2006, 5 pages.

Anonymous, “Avoiding unnecessary makeups when waking up
CPUs at the completion of a grace period”, http://priorartdatabase.
com/IPCOM/00216206D, Mar. 25, 2012, 4 pages.

IBM, “RCU and Sometimes Read Mostly Data Structures”, http://
www.ip.com/pubview/IPCOMO000176300D, Nov. 11, 2008, 2 pages.

* cited by examiner

U.S. Patent Jul. 14, 2015 Sheet 1 of 7 US 9,081,803 B2
A > B C
r1
FIG. 1A (PRIOR ART)
A c
FIG. 1B (PRIOR ART)
A - "'B| . C
x /
B
¥
r1
FIG. 1C (PRIOR ART)
A > B' C
*

FIG. 1D (PRIOR ART)

U.S. Patent Jul. 14, 2015 Sheet 2 of 7

u1

US 9,081,803 B2

A > B

r1

FIG. 2A (PRIOR ART)

Lul

A B

f
r2 r1

FIG. 2B (PRIOR ART)

FIG. 2C (PRIOR ART)

- O

U.S. Patent Jul. 14, 2015 Sheet 3 of 7 US 9,081,803 B2

GRACE PERIOD

PROCESS 0 4"
PROCESS 1 4>|
PROCESS 2 |

PROCESS 3 | 4DI

FIG. 3 (PRIOR ART)

MULTIPROCESSOR COMPUTER SYSTEM
2
PROCESSOR PROCESSOR PROCESSOR
41 42 4n
UPDATER UPDATER UPDATER SHARED
18, 18, 18, MEMORY
8
RE,;-\g)ER RE,;-\;)ER o RE/1\S|):>ER SHARED
! 2 n DATA SET
16
CACHE CACHE CACHE
MEMORY MEMORY MEMORY
10 10, 10, MEMORY
CACHE CACHE CACHE CONTROLLER
CONTROLLER CONTROLLER CONTROLLER 14
12, 12, 12,
SYSTEM BUS (6)

FIG. 4

U.S. Patent Jul. 14, 2015 Sheet 4 of 7

X

US 9,081,803 B2

HP >

FIG. 5

ESTABLISH GLOBAL GENERATION
NUMBER AND ASSIGN
TO DATA ELEMENTS AS CREATED

30

A

GENERATE NEW DATA ELEMENT
ACCORDING TO WHETHER UPDATE
IS A REPLACEMENT, DELETION
OR INSERTION

32

SET NEW DATA ELEMENT’S
GENERATION NUMBER

34

A

CREATE VERSION LINK BETWEEN
NEW AND OLD
DATA ELEMENT VERSIONS (IF ANY)

36

A

CHANGE LINK POINTER(S) TO POINT
TO NEW DATA ELEMENT AND
INCREMENT GLOBAL
GENERATION NUMBER

38

FIG. 6 (PRIOR ART)

U.S. Patent Jul. 14, 2015 Sheet 5 of 7 US 9,081,803 B2

DETERMINE PRESENT VALUE OF
GLOBAL GENERATION
NUMBER AND ASSIGN WA

IT TO SEARCH 40

TRAVERSE DATA ELEMENT GROUP \/\42

A

FOR EACH DATA ELEMENT
COMPARE ITS GENERATIONTO k"
GLOBAL GENERATION NUMBER 44

A

FOLLOW LINKS BETWEEN
NEW AND OLD WA
DATA ELEMENT VERSIONS 46
UNTIL CORRECT DATA
ELEMENT VERSION IS FOUND

FIG. 7 (PRIOR ART)

U.S. Patent Jul. 14, 2015 Sheet 6 of 7 US 9,081,803 B2

52
HP » GNE

S
f |

ADDRESS = GEN

—

v
>
Y
w
]
O

—»

FIG. 8

GNE-1|GNE-2|GNE-3 . . . GNE-n

FIG. 9

\/\
t—

Y

HP

GNE
GEN |

\
3
Y
o
Y
O

]

64

FIG. 10

U.S. Patent Jul. 14, 2015 Sheet 7 of 7 US 9,081,803 B2

72
S ¥ |
HP - A ~ B ¢C
GEN ‘
I
74
FiIG. 11
802‘
|—>P(h)1 M A, » P(A), —> B, » P(B), —» C, » P(C),
HP
FiG. 12
J
100

FIG. 13

US 9,081,803 B2

1
PERFORMANCE OF RCU-BASED SEARCHES
AND UPDATES OF CYCLIC DATA
STRUCTURES

This application is a continuation under 35 U.S.C. 120 of
application Ser. No. 13/652,607, filed Oct. 16, 2012, entitled
“Improving Performance of RCU-Based Searches And
Updates Of Cyclic Data Structures.”

BACKGROUND

1. Field

The present invention relates to computer systems and
methods in which data resources are shared among concur-
rent data consumers while preserving data integrity and con-
sistency relative to each consumer. More particularly, the
invention concerns improvements to a mutual exclusion
mechanism known as “read-copy update,” in which lock-free
data read operations run concurrently with data update opera-
tions.

2. Description of the Prior Art

By way of background, read-copy update is a mutual exclu-
sion technique that permits shared data to be accessed for
reading without the use of locks, writes to shared memory,
memory barriers, atomic instructions, or other computation-
ally expensive synchronization mechanisms, while still per-
mitting the data to be updated (modify, delete, insert, etc.)
concurrently. The technique is well suited to multiprocessor
computing environments in which the number of read opera-
tions (readers) accessing a shared data set is large in compari-
son to the number of update operations (updaters), and
wherein the overhead cost of employing other mutual exclu-
sion techniques (such as locks) for each read operation would
be high. For example, a network routing table that is updated
at most once every few minutes but searched many thousands
of'times per second is a case where read-side lock acquisition
would be quite burdensome.

The read-copy update technique implements data updates
intwo phases. In the first (initial update) phase, the actual data
update is carried out in a manner that temporarily preserves
two views of the data being updated. One view is the old
(pre-update) data state that is maintained for the benefit of
read operations that may have been referencing the data con-
currently with the update. The other view is the new (post-
update) data state that is available for the benefit of other read
operations that access the data following the update. These
other read operations will never see the stale data and so the
updater does not need to be concerned with them. However,
the updater does need to avoid prematurely removing the stale
data being referenced by the first group of read operations.
Thus, in the second (deferred update) phase, the old data state
is only removed following a “grace period” that is long
enough to ensure that the first group of read operations will no
longer maintain references to the pre-update data.

FIGS. 1A-1D illustrate the use of read-copy update to
modify a data element B in a group of data elements A, B and
C. The data elements A, B, and C are arranged in a singly-
linked list that is traversed in acyclic fashion, with each ele-
ment containing a pointer to a next element in the list (or a
NULL pointer for the last element) in addition to storing some
item of data. A global pointer (not shown) is assumed to point
to data element A, the first member of the list. Persons skilled
in the art will appreciate that the data elements A, B and C can
be implemented using any of a variety of conventional pro-
gramming constructs, including but not limited to, data struc-
tures defined by C-language “struct” variables.

10

25

40

45

55

2

It is assumed that the data element list of FIGS. 1A-1D is
traversed (without locking) by multiple concurrent readers
and occasionally updated by updaters that delete, insert or
modify data elements in the list. In FIG. 1A, the data element
B is being referenced by a reader rl, as shown by the vertical
arrow below the data element. In FIG. 1B, an updater ul
wishes to update the linked list by modifying data element B.
Instead of simply updating this data element without regard to
the fact that rl is referencing it (which might crash rl), ul
preserves B while generating an updated version thereof
(shown in FIG. 1C as data element B') and inserting it into the
linked list. This may be done by ul acquiring an appropriate
lock, allocating new memory for B', copying the contents of B
to B', modifying B' as needed, updating the pointer from A to
B so that it points to B', and releasing the lock. As an alterna-
tive to locking, other techniques such as non-blocking syn-
chronization (NBS) or a designated update thread could be
used to serialize data updates. Data element B is partially
maintained in the linked list by preserving its pointer to ele-
ment C. All subsequent (post update) readers that traverse the
linked list, such as the reader r2, will see the effect of the
update operation by encountering B'. On the other hand, the
old reader r1 will be unaffected because the original version
of B and its pointer to C are retained. Although r1 will now be
reading stale data, there are many cases where this can be
tolerated, such as when data elements track the state of com-
ponents external to the computer system (e.g., network con-
nectivity) and must tolerate old data because of communica-
tion delays.

At some subsequent time following the update, r1 will have
continued its traversal of the linked list and moved its refer-
ence off of B. In addition, there will be a time at which no
other reader process is entitled to access B. It is at this point,
representing expiration of the grace period referred to above,
that ul can free B, as shown in FIG. 1D.

FIGS. 2A-2C illustrate the use of read-copy update to
delete a data element B in a singly-linked list of data elements
A, B and C. As shown in FIG. 2A, a reader r1 is assumed be
currently referencing B and an updater ul wishes to delete B.
As shown in FIG. 2B, the updater ul updates the pointer from
A to B so that A now points to C. The pointer from B to C is
retained. In this way, rl is not disturbed but a subsequent
reader 12 sees the effect of the deletion. As shown in FIG. 2C,
rl will subsequently move its reference off of B, allowing B to
be freed following expiration of the grace period.

In the context of the read-copy update mechanism, a grace
period represents the point at which all running processes (or
threads within a process) having access to a data element
guarded by read-copy update have passed through a “quies-
cent state” in which they can no longer maintain references to
the data element, assert locks thereon, or make any assump-
tions about data element state. By convention, for operating
system kernel code paths, a context (process) switch, an idle
loop, and user mode execution all represent quiescent states
for any given CPU running non-preemptible code (as can
other operations that will not be listed here). In some read-
copy update implementations adapted for preemptible read-
ers, all read operations that are outside of an RCU read-side
critical section are quiescent states.

In FIG. 3, four processes 0, 1, 2, and 3 running on four
separate CPUs are shown to pass periodically through quies-
cent states (represented by the double vertical bars). The
grace period (shown by the dotted vertical lines) encompasses
the time frame in which all four processes have passed
through one quiescent state. If the four processes 0, 1, 2, and
3 were reader processes traversing the linked lists of FIGS.
1A-1D or FIGS. 2A-2C, none of these processes having ref-

US 9,081,803 B2

3

erence to the old data element B prior to the grace period

could maintain a reference thereto following the grace period.

All post grace period searches conducted by these processes

would bypass B by following the links inserted by the updater.

There are various methods that may be used to implement
adeferred data update following a grace period, including but
not limited to the use of callback processing as described in
commonly assigned U.S. Pat. No. 5,442,758, entitled “Sys-
tem And Method For Achieving Reduced Overhead Mutual-
Exclusion And Maintaining Coherency In A Multiprocessor
System Utilizing Execution History And Thread Monitor-
ing.” Another commonly used technique is to have updaters
block (wait) until a grace period has completed.

A number of variants of read-copy update have been used
in different operating systems. However, all of these imple-
mentations make at least one of the following assumptions:
1) Stale data is permissible (for example, in read-copy

update-protected routing tables).

2) Readers search the aggregate data structure in an acyclic
manner, so that there is no possibility of a reading process
seeing two different versions of the same data element
during a single operation. This assumption also implies
that, for data elements having multiple entry points, a given
search starts with only one of these entry points.

3) There is no need for multiple data elements to be seen in a
consistent aggregate state. Consistency is important only
for a given data element (as, for example, the data struc-
tures used in the Linux 2.6 kernel’s read-copy update-
protected System V IPC (InterProcess Communication)
mechanism).

4) If group consistency is important for a collection of data
elements, read-copy update must be used in a manner that
allows the group to be updated atomically so as to protect
group integrity. As used herein, the term “atomic” signifies
that the data update operation must complete with the
guarantee that no other process will see inconsistent ver-
sions of the group data elements. For example, in the Linux
2.6 kernel, the directory-cache is protected by read-copy
update, but per-entry locks are also used to ensure that
updates to these entries and their associated inodes are in a
coordinated consistent state when cache readers access the
entries. Another approach would be to make a copy of the
aggregate data structure (i.e., the entire collection of data
elements), update the new copy, and then link the new copy
in place of the old copy. However, this is extremely time
consuming for large groups, and is particularly inefficient
when only small changes are required.

Cyclic searches represent a situation where none of the
foregoing assumptions underlying the use of read-copy
update are in play. An example of a commonly used cyclic
search is the traversal of a cyclic data structure whose ele-
ments are inter-linked in a manner that may result in a reader
encountering the same element more than once during a
single search. A data element group whose elements represent
the states of a finite state machine would be considered such
a data structure. If these data elements change dynamically,
but infrequently, in comparison to the number of read travers-
als, then the use of read-copy update could be advantageous.
However, it will be seen that:

1) Permitting stale data could result in a reader seeing an
inconsistent, and possibly nonsensical, finite state
machine.

2) Traversing a finite state machine is in general an inherently
cyclic activity.

3) Each reader must see a finite state machine that is consis-
tent as a whole—consistency of a particular state is not
sufficient.

10

15

20

25

30

35

40

45

50

55

60

65

4

4) If the finite state machine is large, implementing atomic
data element group updates by group copying will be infea-
sible.

Commonly owned U.S. Pat. Nos. 7,426,511 and 7,953,
778, each naming applicant as an inventor, addresses the need
to maintain group integrity in a shared data element group by
assigning generation numbers to update operations involving
the group. A reader that is searching the data element group
can then identify any update whose generation number cor-
responds to a global generation number noted by the reader at
the start of its search. This approach allows the readers to
traverse the data element group while guaranteeing that those
readers will see consistent data in the face of concurrent
updates. However, the approach must account for the possi-
bility of out-of-order memory references involving the gen-
eration number due to CPU and/or compiler optimizations. It
is essential that readers always see the current global genera-
tion number as updated by the most recent updater as the
readers begin their searches. Ensuring such synchronization
requires either that:

1) Readers execute an explicit memory-barrier instruction
after fetching the global generation number, but before
traversing the data element group; or

2) Updaters wait for a grace period between updating the data
element group and posting the updated global generation
number (and updating any header pointers).

Both of these approaches are slow, motivating an improved
approach that requires neither read-side memory barriers nor
update-side grace periods on the critical read-side or update-
side path.

SUMMARY

A method, system and computer program product are dis-
closed for improving the performance of RCU-based
searches and updates to a shared data element group where
readers must see consistent data with respect to the group as
a whole. An updater may be invoked to create one or more
new group data elements. Each new data element created by
the updater is assigned a new generation number that is dif-
ferent than a global generation number associated with the
data element group and which allows a reader of the data
element group to determine whether the new data element is
a correct version for the reader. The updater may perform
update processing on the new data elements by (1) respec-
tively establishing a first version link from each of the new
data elements to a prior version thereof having a different
generation number, (2) respectively establishing a second
version link to each of the new data elements from its prior
version, and (3) linking the new data elements into the data
element group so that the new data elements are reachable by
readers. The global generation number is updated so that
referential integrity is maintained. This is done using a gen-
eration number element that is referenced by a header pointer
for the data element group, and which in turn references or
forms part of one of the data elements. After a grace period
has elapsed, the prior version, the first version link and the
second version link for each of the new data elements,
together with any prior version of said generation number
element, may be freed.

In one embodiment, the generation number element com-
prises a pointer that references one of the data elements and
whose address comprises the global generation number. This
generation number element may be allocated from a contigu-
ous array of generation number elements.

US 9,081,803 B2

5

In another embodiment, the generation number element
comprises a data structure whose fields include a pointer that
references one of the data elements and a variable storing the
global generation number.

In another embodiment, the generation number element
comprises one of the data elements implemented as a data
structure whose fields include a variable storing the global
generation number.

In another embodiment, the generation number element
comprises a pointer-forwarding entity implemented as a data
structure whose fields include a pointer reference to one of the
data elements and a variable storing the global generation
number.

In another embodiment, the updater may execute a
memory barrier instruction after establishing the first version
link, the second version link and the group links, and prior to
updating the global generation number.

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other features and advantages of the
invention will be apparent from the following more particular
description of example embodiments of the invention, as
illustrated in the accompanying Drawings, in which:

FIGS. 1A-1D are diagrammatic representations of a linked
list of data elements undergoing a data element replacement
according to a conventional read-copy update mechanism;

FIGS. 2A-2C are diagrammatic representations of a linked
list of data elements undergoing a data element deletion
according to a conventional read-copy update mechanism;

FIG. 3 is a flow diagram illustrating a grace period in which
four processes pass through a quiescent state;

FIG. 4 is a functional block diagram showing an example
multiprocessor computing system;

FIG. 5 is a diagrammatic representation of a group of data
elements implemented as a cyclic graph that readers traverse
by way of cyclic searches;

FIG. 6 is a flow diagram showing a generalized prior art
method for updating a data element group;

FIG. 7 is a flow diagram showing a generalized prior art
method for reading a data element group;

FIG. 8 is a diagrammatic representation of a modified
version of the data element group of FIG. 6 in accordance
with a first example embodiment;

FIG. 9 is a diagrammatic representation of an array that
may be used in the first example embodiment;

FIG. 10 is a diagrammatic representation of a modified
version of the data element group of FIG. 6 in accordance
with a second example embodiment;

FIG. 11 is a diagrammatic representation of a modified
version of the data element group of FIG. 6 in accordance
with a third example embodiment;

FIG. 12 is a diagrammatic representation of a modified
version of the data element group of FIG. 6 in which pointer-
forwarding entities are used; and

FIG. 13 is a diagrammatic illustration showing media that
may be used to provide a computer program product for
implementing the technique disclosed herein.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Turning now to the figures, wherein like reference numer-
als represent like elements in all of the several views, FI1G. 4
illustrates an example computing environment in which the
present invention may be implemented. In particular, a mul-
tiprocessor computer system 2 is shown in which multiple

10

15

20

25

30

35

40

45

55

60

65

6

processors4,,4, .. .4, are connected by way of a common bus
6 to a shared memory 8. Respectively associated with each
processor 4,, 4, . . . 4, is a conventional cache memory 10,,
10, . . . 10, and a cache controller 12,, 12, . . . 12,. A
conventional memory controller 14 is associated with the
shared memory 8. The computing system 2 is assumed to be
under the management of a multitasking operating system
adapted for use in an SMP environment. In the alternative, a
single processor computing environment could be used, as
could a hardware multithreading environment, a multi-core
environment and a NUMA (Non-Uniform Memory Access)
environment, to name but a few. Furthermore, multiple mul-
titasking operating systems might all run concurrently on the
same hardware under the control of a hypervisor, and some or
all of these operating systems might implement read-copy
update (RCU) synchronization, as could the hypervisor itself.

It is further assumed that update operations executed
within kernel or user mode processes, threads, or other execu-
tion contexts will periodically perform updates on a set of
shared data 16 stored in the shared memory 8. For purposes of
illustration, it will be assumed that the plural processes con-
currently referencing the shared data set 16 include data
updater operations (“updaters”) 18, 18, . . . 18, and data
reader operations (“readers”)19, .. .19, respectively execut-
ing on processors 4, . . . 4,.. As described by way of back-
ground above, the updates performed by the data updaters
18,, 18, . . . 18, can include modifying elements of a linked
list, inserting new elements into the list, deleting elements
from the list, and many other types of operations. The read
operations 19, . .. 19, will typically be performed far more
often than updates, insofar as this is one of the premises
underlying the use of read-copy update.

It is additionally assumed that the shared data set 16 rep-
resents a group of data elements that must be updated atomi-
cally as a group within a single update operation, so that
readers are presented with a consistent view of the data during
any given read operation. FIG. 5 illustrates an example of
such a data element group in the form of a cyclic graph 20
comprising a linked set of data elements A, B and C. As
mentioned by way of background above, these linked data
elements can be constituted using any suitable programming
construct, including but not limited to C-language “struct”
(data structure) variables comprising one or more data fields
and one or more pointers to other elements in the data group.
During a cyclic search (read operation) involving the graph
20, a reader enters the graph by following the global header
pointer HP to element A of the graph. Depending on the
processing result generated at A, the reader may either move
to B and thence to C, or directly to C. From C, the reader
returns to A. It will be seen that if any of the data elements A,
B or C is modified or deleted using the conventional read-
copy update mechanism, readers will be presented with an
inconsistency if they re-encounter the data element or find
that it has been removed during the same operation. For
example, if the graph 20 is a state machine, the logic of a
reader encountering the updated data element may be thrown
into disarray, possibly causing the reader to take an erroneous
action or crash. An inconsistency problem could also occur if
a new data element is added while a read operation is in
progress.

Commonly assigned U.S. Pat. No. 7,426,511 (the *511
patent), referred to above in the section entitled “Background
of'the Invention,” discloses a technique for maintaining group
integrity while updating a shared data element group such as
the cyclic graph 20. FIG. 6 is illustrative of this prior art
technique. In an initialization step 30, a global generation
number is established relative to the data element group and

US 9,081,803 B2

7

each data element in the group is assigned a copy of the global
generation number at the time of its creation. In steps 32 and
34, an updater that wishes to replace, delete or insert a group
data element generates a new data element, reads the current
global generation number, and sets the data element’s gen-
eration number field to a value that is different (e.g., one
greater) than the current global generation number. If the
updater is replacing a current data element, the new data
element will be a modified copy of the current data element.
Ifthe updater is deleting a current data element, the new data
element will be a copy of the current data element with a
“deleted” flag set. If the updater is inserting a new data ele-
ment, the new data element is created from scratch. In step 36,
the updater sets version links between the new data element
and its pre-update version (if such a version exists). Each data
element version maintains a set of two version pointers, one
being an old-version pointer to a previous version of the data
element (if any) and the other being a new-version pointer to
a next version of the data element (if any). A NULL old-
version pointer is used for any data element having no previ-
ous version (i.e., the data element has not been updated since
the last grace period or is an insert). A NULL new-version
pointer is used for any data element having no next version
(i.e., it is the most current version). In step 38, the updater
changes any link pointers (group links) that point to the old
version of the data element to instead point to the new version,
and then updates the global generation number by setting it
equal to the generation number of the updated data element.
Commonly assigned U.S. Pat. No. 7,953,778 (the 778
patent), also referred to above in the section entitled “Back-
ground of the Invention,” discloses a similar technique that
supports concurrent updaters.

The °511 and *778 patents also disclose a technique that
may be employed while searching (reading) a shared data
element group such as that shown by the cyclic graph 20. FIG.
7 is illustrative of this prior art technique. In step 40, a reader
determines the present value of the global generation number
and assigns it to the search. In step 42, the reader traverses the
data element group following the links between data ele-
ments. In step 44, as each data element is read the reader
compares the global generation number assigned to the
search with the data element’s copy of the global generation
number to determine if the two generation numbers match
(indicating that the data element is valid for this reader). [f the
data element’s generation number does not match that of the
reader, then in step 46, the reader follows the data element’s
version pointers to new and old versions of the data element,
as necessary, to find a version that has a matching generation
number, if any. Typically, the reader will choose the data
element having the largest generation number that is not
greater than the reader’s generation number.

As previously stated above in the section entitled “Back-
ground of the Invention,” the above-described read technique
disclosed in the *511 and *778 patents requires either that:
1) Readers execute an explicit memory-barrier instruction

after fetching the global generation number, but before

traversing the shared data element group; or
2) Updaters wait for a grace period between the update opera-
tion and posting the updated global generation number

(and updating any header pointers).

Both of these approaches are slow, motivating an improved
approach that requires neither read-side memory barriers nor
update-side grace periods on the critical read-side or update-
side path. A proposed approach is to leverage naturally occur-
ring dependency ordering, so that a reader’s normal pointer
traversals when entering the data element group automati-
cally provide the minimum required ordering of memory

10

15

20

25

30

35

40

45

50

55

60

65

8

references, and thus the minimum require overhead. A pointer
fetch and the subsequent dereferencing thereof to perform a
data access is one example of natural dependency ordering.
Given proper use of rcu_dereference() primitives to carry out
the pointer fetch, no CPU or compiler will ever reverse the
pointer fetch and dereferencing operations because the fetch
operation is a prerequisite to the dereferencing operation. The
following alternative embodiments, which are set forth by
way of example and not by way of limitation, implement the
foregoing dependency ordering strategy:

Embodiment 1

Interpose a generation number element between each
header pointer associated with the data element group and the
data element referenced by that header pointer, with the gen-
eration number element’s address serving as the current glo-
bal generation number;

Embodiment 2

Interpose a generation number element between each
header pointer associated with the data element group and the
data element referenced by that header pointer, with the gen-
eration number element containing the current global genera-
tion number; and

Embodiment 3

Place the global generation number in the data group ele-
ment referenced by each header pointer, such that the data
group element is also a generation number element. In imple-
mentations making use of pointer-forwarding structures (as
disclosed inthe *511 and *778 patents, the pointer-forwarding
structure referenced by each header pointer may take on the
role of the generation number element in Embodiment 3.

In each of the Embodiments 1, 2 and 3, it will be seen that
areader will never access the data element group without first
deferencing the header pointer and thereby encountering the
current global generation number. Readers and updaters do
not need to take any explicit actions to ensure proper ordering
of the current global generation number fetch and the data
element group traversal.

Description of Embodiment 1

Embodiment 1 may be understood by reference to FIG. 8,
which illustrates a modified version 50 of the cyclic graph 20
shown in FIG. 5. Instead of the header pointer HP directly
referencing element A in F1G. 8, the header pointer references
a generation number element (GNE) 52, which, in turn, ref-
erences element A. The generation number element 52 can be
implemented as a minimal data element, namely a pointer
variable that references element A. As mentioned above, the
address of the generation number element 52 serves as the
current global generation number, which means that a new
generation number element will be generated for each update
to the global generation number, with an address value that is
higher than the immediately preceding generation number
element. One way to accomplish this is to have the generation
number elements 52 allocated from a contiguous array, such
as the array 54 shown in FIG. 9. One challenge is the case
where there are multiple header pointers referencing different
elements of the data element group, each of which requires its
own generation number element to communicate the current
global generation number. This challenge can be surmounted
by using aggregate generation number elements, with one

US 9,081,803 B2

9

sub-element for each header pointer. One example of such an
aggregate generation number element would be a C-language
“struct” variable with each field thereof representing one
sub-element. The elements of the array 54 would be the
aggregate generation number elements. An array could also
beused to represent an aggregate generation number element.
In that case, the array 54 would be a two-dimensional array,
with each element thereof itself being an array. Although the
address values of each sub-element of a given aggregate
generation number element, address arithmetic may be used
to obtain the canonical generation number address for such
sub-elements given the address of the second or subsequent
generation number element. One shortcoming of Embodi-
ment 1 is that the generation number element 52 adds another
cache line that must be fetched by the reader, which in turn
can degrade reader performance. However, this will not be a
problem if the data element group has a tendency to remain
resident in CPU caches, which is the case for many repeat-
edly-searched data structures.

Description of Embodiment 2

Embodiment 2 may be understood by reference to FIG. 10,
which illustrates a modified version 60 of the cyclic graph 20
shown in FIG. 5. Instead of the header pointer HP directly
referencing element A in FIG. 10, the header pointer again
references a generation number element (GNE) 62, which, in
turn, references element A. If memory space permits (which
it usually will, even in an embedded system), the generation
number element 62 can be implemented as a small data struc-
ture that explicitly stores the current global generation num-
ber in a generation number (GEN) data field 64, and also
stores a pointer variable that references element A.

It should be noted that dependency ordering does not guar-
antee that the global generation number will be accessed
before the reader begins traversing the remainder of the data
element group. The dependency ordering applies only
between the header pointer fetch and the access to the global
generation number element 64 based on dereferencing the
header pointer. Fortunately, ordering between the fetch of the
global generation number 64 and access to the remainder of
the data element group is not necessary. To see this, consider
that any generation number element that provides the global
generation number is subject to RCU rules. As described in
more detail below, an updater will execute a memory barrier
between the time that it establishes the value of the generation
number 64 and the time that it stores a reference to the gen-
eration number element in the corresponding header pointer
HP. In addition, as also described below, any previous version
of the generation number element 62 will have been freed
from memory following an RCU grace period. This means
that for any current RCU reader, there is a one-to-one corre-
spondence between the address of the generation number
element 62 and the stored global generation number 64. The
CPU might delay the fetch of the global generation number
64, but this is not a problem because a given reader’s value for
the global generation number is fixed as soon as its fetches the
corresponding header pointer HP.

As with Embodiment 1, one shortcoming of Embodiment 2
is that the generation number element 62 adds another cache
line that must be fetched by the reader, which in turn can
degrade reader performance. However, this will not be a
problem if the data element group has a tendency to remain
resident in CPU caches, which is the case for many repeat-
edly-searched data structures.

Description of Embodiment 3

Embodiment 3 may be understood by reference to FIG. 11,
which illustrates a modified version 70 of the cyclic graph 20

10

15

20

25

30

35

40

45

50

55

60

65

10

shown in FIG. 5. Instead of placing a generation number
element between the header pointer HP and element A in FIG.
10, element A serves as a generation number element 72, and
stores the current global generation number 74 therein. The
header pointer directly references element A. Embodiment 3
dispenses with the need for a separate generation number
element, and therefore avoids the need for an extra cache line,
as required by Embodiments 1 and 2.

Pointer Forwarding Entities

Turning now to FIG. 12, the use of pointer forwarding
entities is presented in the context of a circular linked list 80.
The linked list 80 comprises three data elements A, B and C,
in that order. There is also a global list head pointer forward-
ing entity P(h) that points to data element A, and three addi-
tional pointer forwarding entities P(A), P(B) and P(C) respec-
tively pointing from data elements A, B and C to data
elements B, Cand A. As described in the *511 patent, pointer-
forwarding entities are useful if it is necessary to maintain
multiple sets of old/new version pointers, potentially one set
for each link pointer that points to a given data element. Each
pointer-forwarding entity contains a like pointer to an actual
data element, a snapshot of the global generation number that
existed with the pointer forwarding element was created, and
pointers to old and new versions of that pointer-forwarding
entity.

It will be appreciated that Embodiments 1 and 2 may be
implemented in the context of FIG. 12 by placing a generation
number element (not shown) between the header pointer and
the global list head pointer forwarding entity P(h). Embodi-
ment 3 may be implemented in the context of FIG. 12 by using
the global list head pointer forwarding entity P(h) to store the
current global generation number.

Updater Operation

Updating the cyclic graphs of FIGS. 8-12 will proceed in
accordance with FIG. 6, except that step 38 will execute a
memory barrier instruction (on systems that require it) prior
to updating the current global generation number according
to any of Embodiments 1, 2 or 3. For Embodiment 1, the
global generation number updating operation will entail cre-
ating a new generation number element 52. For Embodiments
2 and 3, the global generation number updating operation will
entail updating the global generation number 64 or 74 respec-
tively stored in the existing generation number elements 62
and 72. Each of these update operations will use RCU updat-
ing, such that a new version of each generation number ele-
ment will be created while preserving the old version thereof
for the benefit of readers that may still be accessing this
element. Step 38 will also include an additional operation for
each of Embodiments 1 and 2, namely, updating the header
pointers for the data element group to point to the correspond-
ing new or updated generation number element 52 or 62.
Finally, step 38 will employ the traditional RCU technique of
freeing the old version of the generation number element
following a grace period. There may be a single updater, as in
the *511 patent, or several concurrent updaters, as in the 788
patent.

Reader Operation

Reading the cyclic graphs of FIGS. 8-12 will proceed in
accordance with FIG. 7, except that step 40 will involve
deferencing the header pointer HP and accessing the genera-
tion number element 52, 62 or 72 to determine the present
value of the global generation number. As described above,
the address of the global generation number 52 is used as the
global generation number for Embodiment 1. For Embodi-
ments 2 and 3, the global generation numbers 64 and 74 are
used, respectively.

US 9,081,803 B2

11

When a reader traverses the header pointer HP in any of
Embodiments 1, 2 and 3, dependency ordering guarantees
that the fetch of the global generation number will happen
after the header pointer fetch. This ensures that the reader will
see the corresponding global generation number rather than
pre-initialization garbage. Similarly, dependency ordering
guarantees that any fetch of a pointer in the generation num-
ber element will happen after the fetch of the header pointer
HP. This guarantee chains through successive pointer loads,
so that any access anywhere in the linked data structure is
guaranteed to happen after the load of the header pointer HP.

Note that the updater’s memory barrier guarantees that the
corresponding store into the header pointer HP happened
after any updates to the data element group. Therefore, the
readers are guaranteed to see all updates corresponding to the
generation number that they fetched, as required.

Accordingly, a technique has been disclosed for improving
the performance of RCU-based searches and updates to a
shared data element group where readers must see consistent
data with respect to the group as a whole. It will be appreci-
ated that the foregoing concepts may be variously embodied
in any of a data processing system, a machine implemented
method, and a computer program product in which program-
ming logic is provided by one or more machine-useable stor-
age media for use in controlling a data processing system to
perform the required functions. Example embodiments of a
data processing system and machine implemented method
were previously described in connection with FIG. 4-12. With
respect to a computer program product, digitally encoded
program instructions may be stored on one or more computer-
readable data storage media for use in controlling a computer
or other digital machine or device to perform the required
functions. The program instructions may be embodied as
machine language code that is ready for loading and execu-
tion by the machine apparatus, or the program instructions
may comprise a higher level language that can be assembled,
compiled or interpreted into machine language. Example lan-
guages include, but are not limited to C, C++, assembly, to
name but a few. When implemented on a machine comprising
a processor, the program instructions combine with the pro-
cessor to provide a particular machine that operates analo-
gously to specific logic circuits, which themselves could be
used to implement the disclosed subject matter.

Example data storage media for storing such program
instructions are shown by reference numerals 8 (memory) and
10 (cache) of the computer system 2 of FIG. 4. The system 2
may further include one or more secondary (or tertiary) stor-
age devices (not shown) that could store the program instruc-
tions between system reboots. A further example of storage
media that may be used to store the program instructions is
shown by reference numeral 100 in FIG. 13. The storage
media 100 are illustrated as being portable optical storage
disks of the type that are conventionally used for commercial
software sales, such as compact disk-read only memory (CD-
ROM) disks, compact disk-read/write (CD-R/W) disks, and
digital versatile disks (DVDs). Such storage media can store
the program instructions either alone or in conjunction with
an operating system or other software product that incorpo-
rates the required functionality. The storage media could also
be provided by other portable storage media (such as floppy
disks, flash memory sticks, etc.), or storage media combined
with drive systems (e.g. disk drives). As is the case with the
memory 8 and the cache 10 of FIG. 4, the storage media may
be incorporated in data processing platforms that have inte-
grated random access memory (RAM), read-only memory
(ROM) or other semiconductor or solid state memory. More
broadly, the storage media could comprise any electronic,

30

40

45

55

12

magnetic, optical, infrared, semiconductor system or appara-
tus or device, or any other tangible entity representing a
machine, manufacture or composition of matter that can con-
tain, store, communicate, or transport the program instruc-
tions for use by or in connection with an instruction execution
system, apparatus or device, such as a computer. For all of the
above forms of storage media, when the program instructions
are loaded into and executed by an instruction execution
system, apparatus or device, the resultant programmed sys-
tem, apparatus or device becomes a particular machine for
practicing embodiments of the method(s) and system(s)
described herein.

Although various example embodiments have been shown
and described, it should be apparent that many variations and
alternative embodiments could be implemented in accor-
dance with the disclosure. It is understood, therefore, that the
invention is not to be in any way limited except in accordance
with the spirit of the appended claims and their equivalents.

What is claimed is:

1. A method for improving the performance of read-copy
update (RCU)-based searches and updates to a shared data
element group where readers must see consistent data with
respect to the group as a whole, comprising:

invoking an updater to generate one or more new group

data elements;

assigning each new data element created by the updater a

new generation number that is different than a global
generation number associated with said data element
group and which allows a reader of said data element
group to determine whether said new data element is a
correct version for said reader;

performing data element update processing by:

respectively establishing a first version link that links each

of said new data elements to a prior version thereof
having a different generation number;

respectively establishing a second version link that links

each of said new data elements from its prior version;
and

respectively establishing group links that link said new

data elements into said data element group so that said
new data elements are reachable by readers;

updating said global generation number associated with

said data element group so that when all of said updaters
have completed said data element update processing,
said global generation number will correspond to said
new generation number that is associated with said
updater;

said global generation number being updated using a gen-

eration number element that is referenced by a header
pointer for said data element group and which in turn
references or forms part of one of said data elements; and
respectively freeing said prior version, said first version
link, and said second version link for each of said new
data elements following a grace period, together with
any prior version of said generation number element.

2. The method of claim 1, wherein said generation number
element comprises a pointer that references one of said data
elements and whose address comprises said global generation
number.

3. The method of claim 2, wherein said generation number
element is allocated from a contiguous array of generation
number elements.

4. The method of claim 1, wherein said generation number
element comprises a data structure whose fields include a
pointer that references one of said data elements and a vari-
able storing said global generation number.

US 9,081,803 B2

13

5. The method of claim 1, wherein said generation number
element comprises one of said data elements implemented as
a data structure whose fields include a variable storing said
global generation number.

6. The method of claim 1, wherein said generation number
element comprises a pointer-forwarding entity implemented
as a data structure whose fields include a pointer reference to
one of said data elements and a variable storing said global
generation number.

7. The method of claim 1, wherein said updater executes a
memory barrier instruction after establishing said first ver-
sion link, said second version link and said group links, and
prior to updating said global generation number.

8. A system, comprising:

one or More processors;

a memory coupled to said one or more processors, said
memory including a computer useable medium tangibly
embodying at least one program of instructions execut-
able by said processor to perform operations for improv-
ing the performance of read-copy update (RCU)-based
searches and updates to a shared data element group
where readers must see consistent data with respect to
the group as a whole, said operations comprising:

invoking an updater to generate one or more new group
data elements;

assigning each new data element created by the updater a
new generation number that is different than a global
generation number associated with said data element
group and which allows a reader of said data element
group to determine whether said new data element is a
correct version for said reader;

performing data element update processing by:

respectively establishing a first version link that links each
of said new data elements to a prior version thereof
having a different generation number;

respectively establishing a second version link that links
each of said new data elements from its prior version;
and

respectively establishing group links that link said new
data elements into said data element group so that said
new data elements are reachable by readers;

updating said global generation number associated with
said data element group so that when all of said updaters
have completed said data element update processing,
said global generation number will correspond to said
new generation number that is associated with said
updater;

said global generation number being updated using a gen-
eration number element that is referenced by a header
pointer for said data element group and which in turn
references or forms part of one of said data elements; and

respectively freeing said prior version, said first version
link, and said second version link for each of said new
data elements following a grace period, together with
any prior version of said generation number element.

9. The system of claim 8, wherein said generation number
element comprises a pointer that references one of said data
elements and whose address comprises said global generation
number.

10. The system of claim 9, wherein said generation number
element is allocated from a contiguous array of generation
number elements.

11. The system of claim 8, wherein said generation number
element comprises a data structure whose fields include a
pointer that references one of said data elements and a vari-
able storing said global generation number.

10

15

20

25

30

35

40

45

50

55

60

65

14

12. The system of claim 8, wherein said generation number
element comprises one of said data elements implemented as
a data structure whose fields include a variable storing said
global generation number.

13. The system of claim 8, wherein said generation number
element comprises a pointer-forwarding entity implemented
as a data structure whose fields include a pointer reference to
one of said data elements and a variable storing said global
generation number.

14. The system of claim 8, wherein said updater executes a
memory barrier instruction after establishing said first ver-
sion link, said second version link and said group links, and
prior to updating said global generation number.

15. A computer program product, comprising:

one or more non-transitory machine-useable storage

media;

logic provided by said one or more media for improving the

performance of read-copy update (RCU)-based
searches and updates to a shared data element group
where readers must see consistent data with respect to
the group as a whole, as by:

invoking an updater to generate one or more new group

data elements;

assigning each new data element created by the updater a

new generation number that is different than a global
generation number associated with said data element
group and which allows a reader of said data element
group to determine whether said new data element is a
correct version for said reader;

performing data element update processing by:

respectively establishing a first version link that links each

of said new data elements to a prior version thereof
having a different generation number;

respectively establishing a second version link that links

each of said new data elements from its prior version;
and

respectively establishing group links that link said new

data elements into said data element group so that said
new data elements are reachable by readers;

updating said global generation number associated with

said data element group so that when all of said updaters
have completed said data element update processing,
said global generation number will correspond to said
new generation number that is associated with said
updater;

said global generation number being updated using a gen-

eration number element that is referenced by a header
pointer for said data element group and which in turn
references or forms part of one of said data elements; and
respectively freeing said prior version, said first version
link, and said second version link for each of said new
data elements following a grace period, together with
any prior version of said generation number element.

16. The computer program product of claim 15, wherein
said generation number element comprises a pointer that
references one of said data elements and whose address com-
prises said global generation number.

17. The computer program product of claim 16, wherein
said generation number element is allocated from a contigu-
ous array of generation number elements.

18. The computer program product of claim 15, wherein
said generation number element comprises a data structure
whose fields include a pointer that references one of said data
elements and a variable storing said global generation num-
ber.

19. The computer program product of claim 15, wherein
said generation number element comprises one of said data

US 9,081,803 B2
15

elements implemented as a data structure whose fields
include a variable storing said global generation number.

20. The computer program product of claim 15, wherein
said generation number element comprises a pointer-for-
warding entity implemented as a data structure whose fields 5
include a pointer reference to one of said data elements and a
variable storing said global generation number.

21. The computer program product of claim 15, wherein
said updater executes a memory barrier instruction after
establishing said first version link, said second version link 10
and said group links, and prior to updating said global gen-
eration number.

16

